

 © 2014 The Smart Method Ltd 55

Session 1: Exercise

1 Open Exercise1 from the Exercises folder in your sample files folder.

2 Attempt to build the project. A build error will occur.

3 Use the Error List window to find and fix the build error.

4 Switch to the Release build profile and build the project.

5 Add a reference to the AdvancedMath.dll file from your sample files folder (click Yes when prompted
to confirm as you’ll change the ASP.NET version later in this exercise).

6 Enable XML Documentation for the Release build profile.

7 Switch back to the Debug profile and completely rebuild the project.

8 The project is currently set to use ASP.NET version 3.5. Change the project’s settings so that it uses
ASP.NET version 4.0.

9 Open the code-behind file of Default.aspx.

10 Use Surround With to add a try, catch statement around the entire contents of the
ButtonCalculate_Click event handler.

11 Use the Extract Method refactoring utility to extract the code inside the comment markers into a new
method named: AddRowToTable

12 Set a breakpoint at the start of the for loop, start the project in Debug mode and click the Calculate
button.

Your code is paused at the breakpoint.

13 Use the Immediate window to change the value of the NumberOfYears variable to: 10

14 Remove the breakpoint and resume debugging.

 Exercise1 - Start Exercise1 - End

 © 2014 The Smart Method Ltd 57

Session 1: Exercise Answers

These are the four questions that students find the most difficult to answer:

Q 13 Q 11 Q 10 Q 3

1. Click inside the
Immediate window at the
bottom of the Visual
Studio screen.

2. Type:
NumberOfYears = 10

3. Press the <Enter> key.

This was covered in:
Lesson 1-11: Use the
Immediate window.

1. Click and drag to
highlight all of the
code between the
comment markers.

2. Right-click the
highlighted code and
click Refactor
Extract Method…
from the shortcut
menu.

3. Type the name:
AddRowToTable and
click OK.

This was covered in:
Lesson 1-14: Use the
Extract Method
refactoring utility.

1. Click and drag to
highlight all code inside
the
ButtonCalculate_Click
event handler.

2. Right-click the
highlighted code and
click Surround With…
from the shortcut
menu.

3. Find try in the list
and double-click it.

This was covered in:
Lesson 1-13: Use
Surround With.

1. Double-click the error
in the Error List window.

The code-behind file of
Default.aspx is opened
and the error is
highlighted.

The problem is that
TextBoxNumberOfYears
has been misspelled.

2. Change
TextBoxNumberOfYear to
TextBoxNumberOfYears.

This was covered in:
Lesson 1-9: Use the Error
List window.

If you have difficulty with the other questions, here are the lessons that cover the relevant skills:

1 Refer to: Essential Skills Session 1.

2 Refer to: Lesson 1-4: Build, Rebuild and Clean a project.

4 Refer to: Lesson 1-3: Use the Debug and Release profiles.

5 Refer to: Lesson 1-2: Add references to a project.

6 Refer to: Lesson 1-8: Create an XML documentation file.

7 Refer to: Lesson 1-3: Use the Debug and Release profiles, Lesson 1-4: Build, Rebuild and Clean a
project.

8 Refer to: Lesson 1-7: Change the version of ASP.NET used by the project.

9 Refer to: Essential Skills Session 1.

12 Refer to: Essential Skills Session 3.

14 Refer to: Essential Skills Session 3.

 © 2014 The Smart Method Ltd 79

Session 2: Exercise

1 Open Exercise2 from your sample files folder.

2 Open MultiMath.aspx in Design view.

This page displays the results of adding, subtracting, multiplying and dividing the numbers entered
in the text boxes.

3 Open the code-behind file of MultiMath.aspx.

4 Create a new method called DoAddSubtractMultiplyDivide. The new method should return a Tuple
with four double properties. It should accept two double arguments named Number1 and Number2.

5 Add code to the method to add, subtract, multiply and divide Number1 and Number2 and return a
Tuple containing the results of each calculation.

6 Add code to the ButtonDoMath_Click event handler to call the DoAddSubtractMultipleDivide method
and display the results in the Label controls on the page.

7 Open Upload.aspx in Design view.

This page allows you to upload files, which should then be stored in the database.

8 Open the code-behind file of Upload.aspx.

9 Add code to the ButtonUploadFile_Click event handler to retrieve a byte array from the
FileUploadFileToUpload control. Note that you can use the FileBytes property of the control to do this.

10 Add code to make the Data object lazily instantiated.

11 Add code to the ButtonUploadFile_Click event handler to set the properties of the NewFile object using
your byte array and the FileName property of the FileUpload control.

12 Add code to tell the Garbage Collector to clean up memory at the end of the event handler.

13 Open Grid.aspx in Design view.

This page will populate the Table control’s cells with random background colors.

14 Open the code-behind file of Grid.aspx.

15 Add code to the ButtonGetColors_Click event handler to create a 3x3 array of Color objects named:
ColorArray

16 Add code to cycle through your array and populate each element using the GetRandomColor method.

17 Add code to cycle through your array and set the BackColor property of each cell in the TableGrid
table with the value from your array. Do this using the following property:
TableGrid.Rows[X].Cells[Y].BackColor

Exercise2 - Start Exercise2 - End

 © 2014 The Smart Method Ltd 81

Session 2: Exercise Answers

These are the four questions that students find the most difficult to answer:

Q 17 Q 10 Q 9 Q 4

Use the following code:

for (int X = 0; X < 3; X++)
{
 for (int Y = 0; Y < 3; Y++)
 {
 TableGrid
 .Rows[X].Cells
 [Y].BackColor =
 ColorArray[X, Y];
 }
}

This was covered in: Lesson
2-7: Iterate through a
multidimensional array.

Use the following
code:

Lazy
<Exercise2Data
Context>
Data = new Lazy
<Exercise2Data
Context>();

This was covered in:
Lesson 2-2: Use the
Lazy class.

Use the following code:

byte[] FileBytes =
FileUploadFileToUpload
.FileBytes;

This was covered in:
Lesson 2-4: Use the Byte
class.

Use the following code:

private Tuple
<double,double,
double,double>
DoAddSubtract
MultiplyDivide
(double Number1,
double Number2)
{
}

This was covered in:
Lesson 2-1: Use the
Tuple class.

If you have difficulty with the other questions, here are the lessons that cover the relevant skills:

1 Refer to: Essential Skills Session 1.

2 Refer to: Essential Skills Session 1.

3 Refer to: Essential Skills Session 1.

5 Refer to: Lesson 2-1: Use the Tuple class.

6 Refer to: Lesson 2-1: Use the Tuple class.

7 Refer to: Essential Skills Session 1.

8 Refer to: Essential Skills Session 1.

11 Refer to: Essential Skills Session 10 (particularly Lesson 10-8).

12 Refer to: Lesson 2-8: Send commands to the Garbage Collector.

13 Refer to: Essential Skills Session 1.

14 Refer to: Essential Skills Session 1.

15 Refer to: Lesson 2-7: Iterate through a multidimensional array.

16 Refer to: Lesson 2-7: Iterate through a multidimensional array.

 © 2014 The Smart Method Ltd 101

Session 3: Exercise

1 Open Exercise3 from your sample files folder.

2 Open SecretFiles.aspx in Design view.

This page shows a list of files stored in the project’s database and allows you to view them.

When it is finished, you will be able to encrypt and decrypt every file in the database by clicking the
buttons.

3 Open the code-behind file of SecretFiles.aspx.

Most of the code is already in place. All that is needed is to complete the EncryptBinary and
DecryptBinary methods.

4 Add using lines for the System.Security.Cryptography, System.IO and System.Threading namespaces.

5 Add code to the EncryptBinary method to create a new DES object from the System.Cryptography
namespace (you’ll need to use the DES.Create method to do this).

The DES object represents the Data Encryption Standard. It works identically to the Aes object you
used in this session.

6 Add code to set the Key and IV properties of your DES object to the values provided in the
EcryptionKey and InitializationVector properties.

7 Add code to create a MemoryStream object to receive the encrypted data. Name it: EncryptedStream

8 Add code to create a CryptoStream object to encrypt the data. Remember to use the CreateEncryptor
method of your DES object when supplying the arguments.

Ensure that a using statement is in place to automatically dispose of the CryptoStream object.

9 Add code to tell the CryptoStream object to Write the binary data that you want to encrypt.

10 Return the encrypted data using the ToArray method of the EncryptedStream object.

11 Copy and paste your code from the EncryptBinary method to the DecryptBinary method and modify
it to decrypt the binary data provided to it.

12 Modify the code in the ButtonEncryptDatabase_Click event handler so that each call to the
EncryptSecretFile method is handled by its own thread (use the ThreadPool class).

13 Add an int property to track how many files have been encrypted and add a while loop to the
ButtonEncryptDatabase_Click event handler to wait until it matches the value returned by
FilesToEncrypt.Count().

14 Add a lock statement to the EncryptSecretFile method to prevent two threads from calling
Data.SubmitChanges at the same time.

Exercise3 - Start Exercise3 - End

 © 2014 The Smart Method Ltd 103

Session 3: Exercise Answers

These are the four questions that students find the most difficult to answer:

Q 14 Q 13 Q 12 Q 8, 9, 10

1. Add the following
code outside any
methods:

object Locker = new
object();

2. In the
EncryptSecretFile
method, replace the
line:

Data.SubmitChanges();

…with:

lock (Locker)
{
 Data
 .SubmitChanges();
}

This was covered in:
Lesson 3-7: Use the
lock statement to
prevent threads from
conflicting.

1. Add the following
code outside any
methods:

int FilesEncrypted = 0;

2. Add the following
code to the end of the
EncryptSecretFile
method:

FilesEncrypted++;

3. Add the following
code to the end of the
using statement in the
ButtonEncryptDatabase
_Click event handler:

while (FilesEncrypted <
FilesToEncrypt.Count())
{
 Thread.Sleep(1000);
}

This was covered in:
Lesson 3-6: Use the
ThreadPool class to
manage multiple
threads.

Replace the line:

EncryptSecretFile
(FileToEncrypt
.SecretFileID);

…with:

ThreadPool
.QueueUserWorkItem
(new WaitCallback
(EncryptSecretFile),
FileToEncrypt
.SecretFileID);

This was covered in:
Lesson 3-6: Use the
ThreadPool class to
manage multiple
threads.

Use the following code:

using (CryptoStream
EncryptionStream =
new CryptoStream
(EncryptedStream,
DESAlgorithm.
CreateEncryptor(),
CryptoStreamMode.Write))
{
 EncryptionStream.Write
 (BinaryToEncrypt, 0,
 BinaryToEncrypt
 .Length);
}
return EncryptedStream.
ToArray();

This was covered in: Lesson
3-2: Encrypt data using the
AES standard.

If you have difficulty with the other questions, here are the lessons that cover the relevant skills:

1 Refer to: Essential Skills Session 1.

2 Refer to: Essential Skills Session 1.

3 Refer to: Essential Skills Session 1.

4 Refer to: Essential Skills Session 6.

5 Refer to: Lesson 3-2: Encrypt data using the AES standard.

6 Refer to: Lesson 3-2: Encrypt data using the AES standard.

7 Refer to: Lesson 3-2: Encrypt data using the AES standard.

11 Refer to: Lesson 3-3: Decrypt data using the AES standard.

 © 2014 The Smart Method Ltd 145

Session 4: Exercise

1 Open Exercise4 from your sample files folder.

2 Open MailSender.cs.

This is a simple class that sends e-mail messages.

3 Add an overload to the SendEmail method which makes the BodyText value into an argument.

4 Make the ToAddress argument of the first overload optional by giving it a default value of:
info@ASPNETCentral.com

5 Make the first SendEmail overload virtual.

6 Create a new class called: SalesMailSender.cs

7 Make the new SalesMailSender class extend the MailSender class.

8 Override the SendEmail method in the SalesMailSender class and make the new method use the body
text: Thank you for your purchase.

9 Create another new class called: MarketingMailSender.cs

10 Make the new MarketingMailSender class extend the MailSender class.

11 Add a new method to the MarketingMailSender class named: SendPromotionalEmail

12 Add code to the SendPromotionalEmail method that will send an e-mail message with the body text:
Here are some products that may interest you.

You can do this by copying and pasting the code from one of the other methods.

13 Create a new interface named: IMailSender.cs

14 Add a method to your new interface named: SendEmail

15 Ensure that the SendEmail method in the IMailSender interface returns void and requires a single
string argument.

16 Make the MailSender class implement the IMailSender interface.

Exercise4 - Start Exercise4 - End

 © 2014 The Smart Method Ltd 147

Session 4: Exercise Answers

These are the four questions that students find the most difficult to answer:

Q 14 & 15 Q 8 Q 4 Q 3

Use the
following
code:

void
SendEmail(
string
FromAddress
);

This was
covered in:
Lesson 4-16:
Create an
interface.

Use the following code:

public override void
SendEmail(string ToAddress =
"info@ASPNETCentral.com")
{
 using (System.Net.Mail.
 SmtpClient Client =
 new System.Net.Mail.
 SmtpClient())
 {
 string Subject = "Exercise 4";
 string BodyText =
 "Thank you for your
 purchase.";
 Client.Send(
 "info@ASPNETCentral.com",
 ToAddress, Subject,
 BodyText);
 }
}

This was covered in: Lesson 4-13:
Understand the virtual and
override keywords.

Change the line:

public virtual
void
SendEmail(string
ToAddress)

…to:

public virtual
void SendEmail(
string ToAddress
=
"info@ASPNET
Central.com")

This was
covered in:
Lesson 4-7: Add
optional
arguments to a
method.

Add the following code below
the original SendEmail method
(copying and pasting will
speed this up):

public void SendEmail(
string ToAddress,
string BodyText)
{
 using (System.Net.Mail.
 SmtpClient Client =
 new System.Net.Mail.
 SmtpClient())
 {
 string Subject =
 "Exercise 4";
 Client.Send(
 "info@
 ASPNETCentral.com",
 ToAddress, Subject,
 BodyText);
 }
}

This was covered in: Lesson
4-6: Overload a method.

If you have difficulty with the other questions, here are the lessons that cover the relevant skills:

1, 2 Refer to: Essential Skills Session 1.

5 Refer to: Lesson 4-13: Understand the virtual and override keywords.

6 Refer to: Essential Skills Session 6.

7 Refer to: Lesson 4-10: Extend a class.

9 Refer to: Essential Skills Session 6.

10 Refer to: Lesson 4-10: Extend a class.

11 Refer to: Essential Skills Session 6.

12 Refer to: Lesson 2-9: Send e-mail messages using the SmtpClient class.

13 Refer to: Lesson 4-16: Create an interface.

16 Refer to: Lesson 4-15: Implement an interface.

 © 2014 The Smart Method Ltd 171

Session 5: Exercise

1 Open Exercise5 from your sample files folder.

2 Open the code-behind file of Site.Master.

3 Add an #if directive to the Page_Load event handler to display DEBUG in the LabelCompileType
control if the DEBUG constant is found.

4 Add an #elif directive to display FINAL VERSION in the LabelCompileType control if a constant
named FINALVERSION is found.

5 Add an #else directive to display STANDARD in the LabelCompileType control if neither DEBUG nor
FINALVERSION constants are found.

6 Use the #define directive to define the FINALVERSION constant on this page.

7 Open the code-behind file of RandomColors.aspx.

8 Use the #region directive to enclose the Page_Load method in a region named: Event Handlers

9 Use the #region directive to enclose the ColorTable and GetRandomColor methods in a region named:
Random Color Generator

10 Add a using line for: System.Diagnostics

11 Add code to the end of the GetRandomColor method to output the ColorCode variable using the
Debug.WriteLine method.

12 Open RandomColors.aspx in Design view and enable tracing.

13 Open Web.config and add a TextWriterTraceListener to log debug information to:
C:\Practice\ASP.NET Expert\Exercise5.log

Exercise5 - Start Exercise5 - End

 © 2014 The Smart Method Ltd 173

Session 5: Exercise Answers

These are the four questions that students find the most difficult to answer:

Q 11 Q 8 Q 6 Q 3

Add the following
line of code on the
line after string
ColorCode…:

Debug.WriteLine(
ColorCode);

This was covered
in: Lesson 5-8: Use
System.Diagnostics
to write Debug
messages.

Enclose the Page_Load event
handler in the tags:

#region Event Handlers

…and:

#endregion

This was covered in: Lesson
5-1: Create code regions with
the #region directive.

Add the following
code to the very top
of the page, before
the using lines:

#define
FINALVERSION

This was covered
in: Lesson 5-4: Use
the #define
directive to create a
new constant.

Use the following code:

#if DEBUG
 LabelCompileType
 .Text = "DEBUG";
#endif

This was covered in:
Lesson 5-2: Use the #if
directive to selectively
compile code.

If you have difficulty with the other questions, here are the lessons that cover the relevant skills:

1 Refer to: Essential Skills Session 1.

2 Refer to: Essential Skills Session 1.

4 Refer to: Lesson 5-5: Use the #else and #elif directives.

5 Refer to: Lesson 5-5: Use the #else and #elif directives.

7 Refer to: Essential Skills Session 1.

9 Refer to: Lesson 5-1: Create code regions with the #region directive.

10 Refer to: Lesson 5-8: Use System.Diagnostics to write Debug messages.

12 Refer to: Lesson 5-10: Enable tracing.

13 Refer to: Lesson 5-9: Use a listener to save diagnostic information to a file.

 © 2014 The Smart Method Ltd 211

Session 6: Exercise

1 Open Exercise6 from your sample files folder and open SalesAdmin.aspx in Design view.

2 In the GridView control, replace the Product field with a TemplateField called: Product

3 Add a Label control to the ItemTemplate of your new TemplateField and configure it to display the
Product.ProductName data field using the Eval method.

4 In the EditItemTemplate of your TemplateField, add a LinqDataSource control that retrieves all records
from the Product table. Set an appropriate ID property for the control for easy identification.

5 Add a DropDownList control to the EditItemTemplate and link it to the LinqDataSource control you
created in the previous step.

6 Configure your DropDownList control to use ProductName as its display field and ProductID as its
value field.

7 Bind the DropDownList control to the ProductID data field using the Bind method.

8 Open IronData.aspx in Design view and add a ListView control to the page, linked to the
LinqDataSourceIronSales data source.

9 Generate templates for your new ListView control using the Configure ListView option with the
default settings.

10 Open IronChart.aspx in Design view and add a Chart control to the page, linked to the
SqlDataSourceIronSales data source.

11 In the QuickTasks menu of the Chart control, set the X Value Member property to SaleMonth and the
Y Value Member to SaleValue.

12 Open the Web.sitemap file and add a new pair of siteMapNode tags (similar to, and at the same level
as, the Iron tag) with a title property of: Admin

13 Add a new siteMapNode tag inside the Admin tag with a url property of: SalesAdmin.aspx and a title
property of: Sales Admin

14 Open Site.Master in Design view and add a SiteMapDataSource control in the blue area near the top of
the page.

15 Configure the new SiteMapDataSource control to hide the starting node.

16 Add a Menu control in the same area and link it to the SiteMapDataSource control.

17 Set the CssClass property of the new Menu control to: menu

18 Configure the Menu control to display horizontally instead of vertically.

19 Configure the Menu control not to generate any CSS code of its own.

Exercise6 - Start Exercise6 - End

 © 2014 The Smart Method Ltd 213

Session 6: Exercise Answers

These are the four questions that students find the most difficult to answer:

Q 12 & 13 Q 7 Q 3 Q 2

Use the following
code:

<siteMapNode
title="Admin">
 <siteMapNode
 url=
 "SalesAdmin
 .aspx"
 title=
 "Sales Admin"
 />
</siteMapNode>

This was covered
in: Lesson 6-14:
Add a sitemap
file to a project.

1. Open the
QuickTasks menu of
the DropDownList
control and click
Edit Databindings…

2. Click the Bound
to drop-down
menu and select
ProductID.

3. Click OK.

This was covered
in: Lesson 6-9: Use
the GridView
EditItemTemplate.

1. Open the QuickTasks menu of
the GridView control and click Edit
Templates.

2. Drag a Label control into the
ItemTemplate area.

3. Open the QuickTasks menu of
the Label control and click Edit
DataBindings…

4. Click Custom binding.

5. In the code expression box, type:

Eval("Product.ProductName")

6. Click OK.

This was covered in: Lesson 6-8:
Use the GridView TemplateField.

1. Open the QuickTasks
menu of the GridView
control and click
Edit Columns…

2. Click the Product column
in the Selected fields pane
and click the delete button.

3. Click TemplateField in the
Available fields pane and
click Add.

4. Set the HeaderText
property to: Product

5. Click OK.

This was covered in: Lesson
6-8: Use the GridView
TemplateField.

If you have difficulty with the other questions, here are the lessons that cover the relevant skills:

1 Refer to: Essential Skills Session 1.

4 Refer to: Lesson 6-9: Use the GridView EditItemTemplate.

5 Refer to: Lesson 6-9: Use the GridView EditItemTemplate.

6 Refer to: Lesson 6-9: Use the GridView EditItemTemplate.

8 Refer to: Lesson 6-10: Create a ListView control.

9 Refer to: Lesson 6-10: Create a ListView control.

10 Refer to: Lesson 6-4: Create a Chart control.

11 Refer to: Lesson 6-4: Create a Chart control.

14 Refer to: Lesson 6-16: Use the TreeView and SiteMapDataSource controls.

15 Refer to: Lesson 6-16: Use the TreeView and SiteMapDataSource controls.

16 Refer to: Lesson 6-17: Use the Menu control.

17 Refer to: Lesson 6-17: Use the Menu control.

18 Refer to: Lesson 6-17: Use the Menu control.

19 Refer to: Lesson 6-17: Use the Menu control.

 © 2014 The Smart Method Ltd 237

Session 7: Exercise

1 Open Exercise7 from your sample files folder.

2 Open the ASP.NET Configuration utility and add a new application setting with the Name:
ApplicationName and the Value: Exercise7

3 Create a new Web User Control named: ApplicationName.ascx

4 Add a Label control to your new Web User Control with the ID: LabelApplicationName

5 Open the code-behind file of your Web User Control and add code to the Page_Load event handler to
retrieve the ApplicationName application setting and display its value in the LabelApplicationName
control.

To retrieve application settings, use the Sytem.Configuration.ConfigurationManager class.

6 Open Default.aspx in Design view and add your Web User Control to the page.

7 Add a new skin file to the project, named: VioletGridViews.skin

8 Add code to your new skin file to set the BackColor property of GridView controls to: Violet

9 Open Sator.aspx and apply the VioletGridViews theme to the page.

10 Open LuckyNumber.aspx and enable caching on the page with a duration of 3600 seconds.

11 Add a new HTTP Handler (also called an ASP.NET Handler) to the project, named:
FeaturesHandler.cs

12 Add code to your HTTP Handler to look for the word LuckyNumber using the
context.Request.Path.Contains() method and redirect the user to LuckyNumber.aspx if it is found.

13 Add a Web.config file to the Features folder and add code to apply the FeaturesHandler HTTP handler
to the folder.

14 Add a new HTTP Module (also called an ASP.NET Module) to the project, named:
UserLogModule.cs

15 Create a new method in your HTTP Module with the following code:

public void LogUser(object sender, EventArgs args)
{
}

16 Add code to the LogUser method to retrieve the HttpApplication object from the sender argument.

17 Add code to the LogUser method to log the HttpApplication.User.Identity.Name property using the
System.Diagnostics.Debug.WriteLine method.

18 Remove any existing code from the Init method and then add code to attach your LogUser method to
the context.AuthorizeRequest event.

19 Add code to the project’s main Web.config file to apply the HTTP Module to the project.

Exercise7 - Start Exercise7 - End

 © 2014 The Smart Method Ltd 239

Session 7: Exercise Answers

These are the four questions that students find the most difficult to answer:

Q 16, 17, 18 Q 13 Q 12 Q 5

1. Add the following code to
the LogUser method:

HttpApplication
CurrentApplication =
(HttpApplication)sender;

2. Add the following code on
the next line:

System.Diagnostics.Debug.
WriteLine
(CurrentApplication.User.
Identity.Name);

3. Add the following code to
the Init method:

context.AuthorizeRequest
+= new EventHandler
(LogUser);

This was covered in: Lesson
7-7: Create an HTTP Module.

Add the following
code to the
<system.web> tag in
your new
Web.config file:

<httpHandlers>
 <add verb="*"
 path="*"
 type=
 "Exercise7
 .FeaturesHandler"
 />
</httpHandlers>

This was covered
in: Lesson 7-6:
Apply an HTTP
Handler to a folder.

There are a number of
ways you could
accomplish this, but
this simple code will
suffice:

if (context.Request.
Path.Contains
("LuckyNumber"))
{
 context.Response.
 Redirect
 ("~/
 LuckyNumber.aspx
 ");
}

This was covered in:
Lesson 7-5: Create an
HTTP Handler.

Use the following code:

LabelApplicationName.
Text =
System.Configuration.
ConfigurationManager.
AppSettings
["ApplicationName"];

This was covered in:
Lesson 7-1: Work with
application settings.

If you have difficulty with the other questions, here are the lessons that cover the relevant skills:

1 Refer to: Essential Skills Session 1.

2 Refer to: Lesson 7-1: Work with application settings.

3 Refer to: Lesson 7-4: Create a Web User Control.

4 Refer to: Lesson 7-4: Create a Web User Control.

6 Refer to: Lesson 7-4: Create a Web User Control.

7 Refer to: Lesson 7-2: Create a skin.

8 Refer to: Lesson 7-2: Create a skin.

9 Refer to: Lesson 7-2: Create a skin.

10 Refer to: Lesson 7-9: Enable caching.

11 Refer to: Lesson 7-5: Create an HTTP Handler.

14 Refer to: Lesson 7-7: Create an HTTP Module.

15 Refer to: Lesson 7-7: Create an HTTP Module.

19 Refer to: Lesson 7-8: Implement custom security with an HTTP Module.

 © 2014 The Smart Method Ltd 265

Session 8: Exercise

1 Open Exercise8 from your sample files folder.

2 Add a new web service to the project, named: TestService.asmx

3 Add a new Service Reference to the project, connecting to TestService.asmx. Name it:
TestServiceReference

4 Open Time.aspx in Design view.

5 Add a ScriptManager control to the page and name it: ScriptManagerTime

6 Add an UpdatePanel control to the page and name it: UpdatePanelTime

7 Add a Label control inside the UpdatePanel control and name it: LabelTime

8 Add a Timer control inside the UpdatePanel control and name it: TimerTime

9 Set the Interval property of the new Timer control to: 1000

10 Set the Triggers property of the UpdatePanel control to refresh when the Tick event of the TimerTime
control is fired.

11 Add a Tick event handler to the new Timer control with the following code:

LabelTime.Text = GetTime();

12 Open the code-behind file of TimeManual.aspx and make the GetTime method into a web method.

13 Open TimeManual.aspx in Design view and configure the ScriptManager control to enable Page
Methods.

14 Switch to Source view and add code to the GetTime function to call the GetTime web method and
display the resulting value in the LabelTime <div> tag.

You can change the value in LabelTime by using the following code:

$('#LabelTime').html(ValueToSet);

15 Modify your code to directly call the GetTime web method using the JQuery $.ajax function.

 Exercise8 - Start Exercise8 - End

 © 2014 The Smart Method Ltd 267

Session 8: Exercise Answers

These are the four questions that students find the most difficult to answer:

Q 15 Q 14 Q 12 Q 3

Use the following code:

function GetTime() {
 $.ajax({
 type: "POST",
 url: "TimeManual.aspx/
 GetTime",
 contentType:
 "application/json",
 success: function(data) {
 $('#LabelTime').
 html(data.d);
 },
 });
}

This was covered in: Lesson
8-11: Directly call a web
method that returns a value
using JQuery.

Use the following code:

function GetTime() {
 PageMethods.
 GetTime
 (function (response) {
 $('#LabelTime')
 .html(response);
 });
}

This was covered in:
Lesson 8-8: Call a web
method that returns a
value using JavaScript.

Add the
following code
just above the
GetTime method:

[WebMethod]

This was covered
in: Lesson 8-6:
Create a web
method.

1. Right-click References
in the Solution Explorer
and click
Add Service Reference…
from the shortcut
menu.

2. Click Discover.

3. In the Namespace box,
type:
TestServiceReference

4. Click OK.

This was covered in:
Lesson 8-2: Use a
Service Reference to
connect to a web
service.

If you have difficulty with the other questions, here are the lessons that cover the relevant skills:

1 Refer to: Essential Skills Session 1.

2 Refer to: Lesson 8-1: Create a web service.

4 Refer to: Essential Skills Session 1.

5 Refer to: Lesson 8-3: Create ScriptManager and UpdatePanel controls.

6 Refer to: Lesson 8-3: Create ScriptManager and UpdatePanel controls.

7 Refer to: Lesson 8-3: Create ScriptManager and UpdatePanel controls.

8 Refer to: Lesson 8-5: Use the Timer control for scheduled updates.

9 Refer to: Lesson 8-5: Use the Timer control for scheduled updates.

10 Refer to: Lesson 8-5: Use the Timer control for scheduled updates.

11 Refer to: Lesson 8-5: Use the Timer control for scheduled updates.

13 Refer to: Lesson 8-6: Create a web method.

 © 2014 The Smart Method Ltd 293

Session 9: Exercise

1 Open Exercise9 from your sample files folder.

2 Open the code-behind file of TotalSales.aspx.

3 Add code to the Page_Load event handler to extract the total of the SaleValue fields from the Sale
database table using the LINQ Sum method. Display the result in the LabelTotalSales control.

4 Open the code-behind file of Sales.aspx.

5 Modify the Page_Load event handler to use an anonymous type which extracts the following fields:

Sale.SaleID
Sale.SaleQuantity
Sale.SaleValue
Sale.Customer.CustomerName
Sale.Product.ProductName

6 Open the code-behind file of SalesByProduct.aspx.

7 Modify the Page_Load event handler to return the total of all sales values grouped by product name.
To do this, use the GroupBy and Sum methods with an anonymous type.

8 Open the code-behind file of Customers.aspx.

9 Add code to the ButtonSaveAsCSV event handler to save the data from the Customers collection into a
CSV file.

Save the file to: C:\Practice\ASP.NET Expert\Exercise9.csv

10 Add code to the ButtonSaveAsXML event handler to save the data from the Customers collection into
an XML file.

Save the file to: C:\Practice\ASP.NET Expert\Exercise9.xml

11 Open the code-behind file of ReadDataFiles.aspx.

12 Add code to the ButtonReadCSV_Click event handler to read the CSV file you created and display it
in the LabelResult control as an HTML table.

13 Add code to the ButtonReadXML_Click event handler to read the XML file you created and display it
in the LabelResult control as an HTML table.

Exercise9 - Start Exercise9 - End

 © 2014 The Smart Method Ltd 295

Session 9: Exercise Answers

These are the three questions that students find the most difficult to answer:

Q 13 Q 10 Q 7

Use the following code:

XmlDocument Document = new
XmlDocument();
Document.Load(
FileUploadDataFile.FileContent);
XmlNodeList CustomerNodes =
Document.
GetElementsByTagName
("Customer");
string HTMLOutput = "<table>";
foreach (XmlNode CustomerNode in
CustomerNodes)
{
 HTMLOutput += "<tr><td>" +
 CustomerNode.Attributes
 ["CustomerID"].Value + "</td>";
 HTMLOutput += "<td>" +
 CustomerNode.Attributes
 ["CustomerName"].Value + "</tr>";
}
HTMLOutput += "</table>";
LabelResult.Text = HTMLOutput;

This was covered in: Lesson 9-10: Read
data from an XML file.

Use the following code:

XmlDocument Document = new
XmlDocument();
XmlElement RootElement =
Document.CreateElement("Customers");
foreach (Customer CustomerToXML in
Customers)
{
 XmlElement CustomerElement =
 Document.CreateElement("Customer");
 CustomerElement.
 SetAttribute("CustomerID",
CustomerToXML.CustomerID.
 ToString());
 CustomerElement.
 SetAttribute("CustomerName",
 CustomerToXML.CustomerName);
 RootElement.
 AppendChild(CustomerElement);
}
Document.AppendChild(RootElement);
Document.Save("C:\\Practice\\ASP.NET
Expert\\Exercise9.xml");

This was covered in: Lesson 9-9: Write data
to an XML file.

Use the following
code:

var Result =
Data.Sales.
GroupBy(Sale =>
Sale.Product.
ProductName).
Select(Group =>
new {Group.Key,
TotalSales=
Group.Sum
(Sale =>
Sale.SaleValue)
});

This was covered
in: Lesson 9-3:
Use the Sum and
GroupBy LINQ
methods.

If you have difficulty with the other questions, here are the lessons that cover the relevant skills:

1 Refer to: Essential Skills Session 1.

2 Refer to: Essential Skills Session 1.

3 Refer to: Lesson 9-1: Use the Average LINQ method.

4 Refer to: Essential Skills Session 1.

5 Refer to: Lesson 9-2: Use LINQ anonymous types.

6 Refer to: Essential Skills Session 1.

8 Refer to: Essential Skills Session 1.

9 Refer to: Lesson 9-7: Write data to a CSV file.

11 Refer to: Essential Skills Session 1.

12 Refer to: Lesson 9-8: Read data from a CSV file.

 © 2014 The Smart Method Ltd 315

Session 10: Exercise

1 Open Exercise10 from your sample files folder.

2 View EmailRegex.aspx in your web browser.

3 Enter a regular expression for e-mail addresses in the Regular Expression box and click Test
Expression.

The correct regular expression should match the two valid e-mail addresses but not match the two
invalid e-mail addresses.

4 Close your web browser, return to Visual Studio and open EmailForm.aspx in Design view.

5 Add a RegularExpressionValidator control to the page that will ensure that the TextBoxEmailAddress
control contains a valid e-mail address.

6 Open the code-behind file of EmailForm.aspx and add C# code to confirm your
RegularExpressionValidator control’s validation even if the user has disabled JavaScript.

7 Open the code-behind file of CustomerNumber.aspx.

8 Add C# code to the ButtonConfirm_Click event handler to confirm that the CustomerNumber variable
contains a valid 6-digit number.

9 Open Web.config and add code to allow security validation to be disabled on the LinkExtractor.aspx
page.

10 Open LinkExtractor.aspx in Source view and disable security validation on the page.

11 View LinkExtractor.aspx in your web browser.

12 In the Regular Expression box, enter a regular expression that will extract HTML links.

13 Click Extract Links.

 Exercise10 - Start Exercise10 - End

 © 2014 The Smart Method Ltd 317

Session 10: Exercise Answers

These are the four questions that students find the most difficult to answer:

Q 12 Q 10 Q 9 Q 8

Use the following
regular expression:

<a.+>

This was covered
in: Lesson 10-5:
Create a regular
expression for
HTML links.

Add the following
property to the <%@ Page>
tag:

ValidateRequest="false"

This was covered in:
Lesson 10-5: Create a
regular expression for
HTML links.

Add the following code
inside the <configuration>
tag:

<location
path="LinkExtractor.aspx">
 <system.web>
 <httpRuntime
 requestValidationMode
 ="2.0" />
 </system.web>
</location>

This was covered in: Lesson
10-5: Create a regular
expression for HTML links.

1. Add the following
using line:

using System.Text.
RegularExpressions;

2. Add the following
code:

bool IsValid = Regex.
IsMatch(
CustomerNumber,
"[0-9]{6}");

3. Enclose the
remaining code in the
following if statement:

if (IsValid) { }

This was covered in:
Lesson 10-7: Work with
regular expressions in
C#.

If you have difficulty with the other questions, here are the lessons that cover the relevant skills:

1 Refer to: Essential Skills Session 1.

2 Refer to: Essential Skills Session 1.

3 Refer to: Lesson 10-4: Create a regular expression for e-mail addresses.

4 Refer to: Essential Skills Session 1.

5 Refer to: Lesson 10-6: Use the RegularExpressionValidator control.

6 Refer to: Lesson 10-6: Use the RegularExpressionValidator control.

7 Refer to: Essential Skills Session 1.

11 Refer to: Essential Skills Session 1.

 © 2014 The Smart Method Ltd 345

Session 11: Exercise

1 Open Exercise11 from your sample files folder.

2 Open CompressFile.aspx in Design view and add a Click event handler to the ButtonCompress control.

3 Add code to the new event handler to compress the file from the FileUploadCompress control.

4 Add code to output the compressed file to the user’s web browser.

5 Open Global.asax.

6 Add a new method to Global.asax that runs the CleanUp.bat program.

7 Add code to the Application_Start event handler that will run the new method every hour.

8 Open MultiUpload.aspx in Source view.

9 Add code to the AddFile JavaScript function to add a new upload control to the Uploads tag.

10 Open the code-behind file of XMLConfiguration.aspx.

11 Add code to the ButtonLoadConfiguration_Click event handler to deserialize the Configuration.xml file
into the LoadedConfiguration object.

12 Open BannerHandler.cs from the Banner folder.

13 Add code to the ProcessRequest method to create and output an image.

The image should be 700 pixels wide and 75 pixels high.

The image should use the Arial font at size 60

The image should contain the text: The Smart Method

14 View Banner.aspx in your web browser to view the image.

Exercise11 - Start Exercise11 - End

 © 2014 The Smart Method Ltd 347

Session 11: Exercise Answers

These are the three questions that students find the most difficult to answer:

Q 13 Q 6, 7 Q 3, 4

Use the following code:

Bitmap CaptchaImage = new
Bitmap(700, 75);
Graphics GraphicsObject =
Graphics.FromImage
(CaptchaImage);
GraphicsObject.FillRectangle
(Brushes.White,
new Rectangle(0, 0, 700, 75));
Font CaptchaFont = new
Font("Arial", 60);
GraphicsObject.DrawString
(BannerText, CaptchaFont,
Brushes.Black,
new PointF(0, 0));
CaptchaImage.Save
(context.Response.
OutputStream,
ImageFormat.Jpeg);
context.Response.End();

This was covered in: Lesson
11-9: Use the System.Drawing
classes to manipulate images
and Lesson 11-10: Create a
Captcha image system.

1. Create the method using
the following code:

static void
RunCleanUp(object sender)
{
 Process CleanUp =
 Process.Start(
 ((HttpContext)sender).
 Server.MapPath
 ("~/CleanUp.bat"));
}

2. Add the following code to
the Application_Start event
handler:

Timer CleanUpTimer = new
Timer(new TimerCallback
(RunCleanUp),
HttpContext.Current,
0, 3600000);

This was covered in: Lesson
11-3: Run an external
program and Lesson 11-4:
Create a scheduled event
using a Timer object.

Use the following code:

MemoryStream CompressedStream =
new MemoryStream();
GZipStream Compressor =
new GZipStream(CompressedStream,
CompressionMode.Compress);
Compressor.Write(
FileUploadFileToCompress.
FileBytes, 0,
FileUploadFileToCompress.FileBytes.
Length);
byte[] CompressedBytes =
CompressedStream.ToArray();
Response.AddHeader
("content-disposition",
"attachment;filename=" +
FileUploadFileToCompress.
FileName);
Response.BinaryWrite
(CompressedBytes);
Response.End();

This was covered in: Lesson 11-7:
Compress a file and Lesson 11-2:
Output a file to the user’s web browser

If you have difficulty with the other questions, here are the lessons that cover the relevant skills:

1 Refer to: Essential Skills Session 1.

2 Refer to: Essential Skills Session 3.

5 Refer to: Essential Skills Session 2.

8 Refer to: Essential Skills Session 1.

9 Refer to: Lesson 11-11: Create a page that can upload multiple files.

10 Refer to: Essential Skills Session 1.

11 Refer to: Lesson 11-6: Deserialize an XML file back into an object.

12 Refer to: Essential Skills Session 1.

14 Refer to: Essential Skills Session 1.

